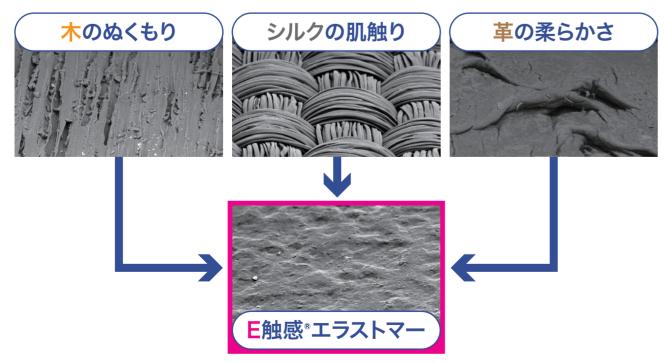

科学の力で触感のメカニズムを解明した新素材

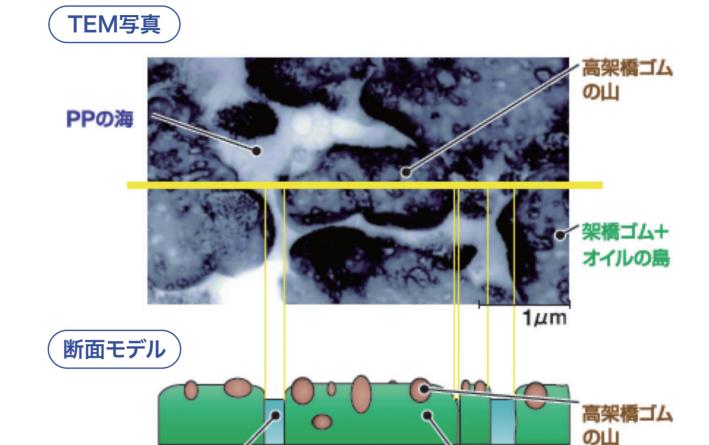
E触感®エラストマーコンパウンド

E触感®エラストマーは、高度に架橋させたスチレン系エラストマーで、独自のモルフォロジーを有します。 触感だけでなく、耐油性、耐熱性にも優れ、射出成形による自動車内装部品に展開しています。

触感を決める3つのファクター


3つの数値をもとに触感に優れた材料が誕生しました。 他の素材との触感の数値差の確認が可能です。

木のぬくもり シルクの肌触り 革の柔らかさ


触感を左右する表面構造・物性と E触感®エラストマーに近い感覚の材質

感覚	表面構造	物性値		近似材質(物性値)	
温かさ	接触面積が小	熱移動特性	0.46	木	
冷たさ	さくなる「 <mark>山</mark> 」	qmax		(0.3)	
サラサラ	高粘度架橋	摩擦係数	0.56	シルク	
ベタベタ	ゴムの「 <mark>山</mark> 」	μ		(0.3)	
柔らかさ 硬さ	「島」の クッション	硬度	81	革 (82)	

※E触感®はリケンテクノス(株)の登録商標です。

モルフォロジー 海島山構造の形成

各ドメインの粘度差により表面に海島山の凹凸を創り出す

架橋ゴム+オイルの島

⇒ 特有の触感を発現

PPの海

■触感®エラストマーコンパウンド 性能表

項目	単位	EVT1075N	EVT1080N	EVT1090N
熱移動特性:qmax	_	0.47	0.46	0.46
摩擦係数:μ	_	0.58	0.56	0.57
硬さ(HDA15秒後)	_	75	81	90
比重	_	0.96	0.91	0.91
テーバー摩耗量 (CS-10 1kg 1000回転)	mm ³	10	8	10
耐薬品性 (レザーワックス、中性洗剤)	_	変化なし	変化なし	変化なし
耐熱性(外観変化) (100℃ 1000時間)	_	変化なし	変化なし	変化なし
耐光性(外観変化) (キセノンウエザオメーター)	_	著しい 変化なし	著しい 変化なし	著しい 変化なし

※上記特性値は代表値につき、保証値ではありません。

使用部品例

上記製品に関するお問い合わせ